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Abstract. In this work, we present a path-planning method for the
Mobile Data Collector (MDC) in a wireless sensor network (WSN). In
our method, a tour for the MDC is generated such that the latency
of delivering data to the sink is reduced. We show that the TSP tour
covers all the nodes of the WSN. However, the latency for the TSP tour
may be prohibitively high for delay-sensitive real-time WSNs. We reduce
the latency by shortening the given TSP tour using a method called
Linear Shortcut. We observe that the MDC need not visit the exact
location of the node. It only need to be in the proximity of the node
as required by the transmission radius. We present an algorithm that
iteratively shortens tour-length and hence, reduces the latency. We term
the resulting tour as Tight Label Covering (TLC) tour. Experimental
results show that TLC tour reduces latency by a significant margin.

Keywords: Wireless Sensor Network, Path-planning, Mobile Data Collector,
TSP tour

1 Introduction

Wireless Sensor Network (WSN) is widely used for tracking, monitoring and
other purposes. The problem of collecting data packets from the sensor nodes
and depositing those to the sink node is known as Data Gathering Problem [1,2].
Using mobile elements for data gathering in the WSN is a recent trend [3]. It
has many advantages. For example, it increases connectivity, reduces cost of
deployment of a dense WSN and increases the lifetime of the WSN. However,
it has the disadvantage of high latency as these mobile elements have limited
speed (compared to the high speed data gathering by routing). The dedicated
mobile element in the WSN which collects data packets and brings those to
the static sink is called Mobile Data Collector (MDC). A convenient way to
control the latency in the case of data collection by the MDC is to carefully
plan its path so that the path is as short as possible. In this work, we present a
path-planning method that shortens the path of the MDC iteratively. We test
our path-planning method in a simulation which is run on a realistic testbed.



Experimental results show that the shortening of the path indeed translates into
decreased latency and other improvements.

Rest of the sections are organized as follows. Related works are discussed
in Section 2. The problem is formulated in Section 3. Our method is presented
in Section 4. Experimental results are presented in Section 5. The prospect of
future work is presented in Section 6.

2 Related Works

A complete survey on using mobile elements for data collection in the WSN is
presented in [3]. Earlier works on mobile elements can be found in [4], [5], [6] and
[7]. However, random motion of the mobile elements in these works is not suitable
for optimization. Mobile sinks have been considered in [8] and [9]. Mobile relay
based approaches for opportunistic networks have been surveyed in [10]. How-
ever, these methods are not suitable for the WSN because of its difference with
such networks. In [11], an energy-efficient data gathering mechanism for large-
scale multi-hop network has been proposed. The inter-cluster tour proposed in
this work is NP -hard. Latency issue is not addressed in it. One of the heuristics
used in this work produces edges which are not connected with any nodes of the
WSN. Latency is considered while planning path for the mobile collector in [12]
and [13]. Methods presented in these works produce a shorter tour termed Label
Covering tour from a TSP-tour. However, the transmission range of the sensor
nodes is ignored in the shortening process. In [14], authors propose an approxi-
mation algorithm which is based on the TSP-tour of the MDC. Although, the
computation time (O(n)) is impressive, the solution is applicable to only certain
kind of TSP-tour (tours for which the centroid of the tour-polygon lies within
that polygon). If a condition regarding the concavity of the given TSP-tour is
not met, the problem of finding the optimal solution becomes NP -hard. In [15],
authors address the problem of planning paths of multiple robots so as to collect
the data from all sensors in the least amount of time. The method presented
here exploits earlier work on TSP -tour with neighborhood problem. However,
this work does not utilize the available location information of the sensor nodes
to the fullest as it allows the traversal of the full boundary of the transmission
region of a node. In sparse network, one or more sensor nodes have no neighbors
at all. As a result, the traversal of the boundary those nodes is futile and adds
up to the tour-length.

3 Preliminaries

We represent a WSN with n nodes by a complete graph Kn where the graph-
nodes represent the sensors and the sink. The edges in this graph represent the
Euclidian distances between two nodes. We adopt the disk model of the given
transmission range TXR. A circle with radius TXR centered at a node represent
the area of radio transmission of that node. We assume that there are one sink
and one MDC in the WSN and that both the sink and the sensor nodes are



static. A tour or cycle for the MDC is a closed path in the graph Kn which
starts and ends at the sink node.

Definition 1. A TSP-tour is a tour in which the MDC visits the exact location
of all the nodes in the WSN exactly once. The min-cost TSP tour1 is a TSP-tour
in which the MDC covers the minimum Euclidian distance.

Definition 2. A tour T by the MDC is complete if each sensor node of the
WSN can send data packets to the visiting MDC directly or via a neighboring
which forwards packets. Otherwise, the tour is incomplete.

By definition, a TSP-tour is complete. However, it is not a good choice for a
delay-sensitive WSN as explained in the following section.

Definition 3. Data Delivery Latency (DDL) of a packet is the time-difference
between the generation and delivery of the packet.

Let a packet i be generated at tg time after the MDC has set out from the
sink node. The MDC completes the current tour in tT time according to some
tour plan T . DDL for a packet i is given by:

tl(i) = tT − tg(i) (1)

If n packets are collected in the current tour by the MDC, average packet
delivery latency tavg is given by:

tavg =

∑n
i=1[tT − tg(i)]

n

= tT −
∑n

i=1 tg(i)

n
(2)

The term
∑n

i=1 tg(i)

n in Equation 2 is the average packet generation time. This
parameter is not controllable as it depends on the sampling rate of the sensor
nodes and the event frequency. However, we may improve both per packet DDL
(tl) and average DDL (tavg) by decreasing the tour-time tT (See Equation 1 and
2). The tour-time of the TSP-tour i.e. tTSP has two components: the fraction of
tour-time th when the MDC halts and collects data from the nearby nodes and
the fraction of tour-time tm when the MDC travels between the node positions.

tTSP = th + tm (3)

When the number of nodes is very high and/or the network is sparse, th << tm
and thus tm dominates tour-time tTSP . This assumption is logical for practical
scenario where the speed of a commercially available robotic car used as MDC
usually is 5 ms−1 whereas packet transfer from a sensor node to the MDC
happens in the order of miliseconds [16]. Thus, decreasing the motion time tm

1 We use TSP-tour to denote the minimum cost TSP-tour in this work



contributes to improving latency. If the speed of the MDC is vMDC , and if we
assume that it accelerates to this speed instantly and stops instantly, then

tm =
|tTSP |
vMDC

(4)

where |tTSP | is the path-length of the TSP-tour. Given a particular MDC, vMDC

is fixed. The only way to decrease tour-time is decreasing the length of the tour
i.e. |tTSP | (See Equation 4). However, decreasing the tour-length arbitrarily has
the risk of making the resulting tour incomplete. Therefore, we address the issue
carefully so that, the resulting tour is complete and shorter than the TSP-tour.

Problem Statement

Given a TSP-tour of the MDC in a WSN, find a tour Td that is complete and
shorter than the TSP-tour.

4 Improving Latency by Means of Linear Shortcut

4.1 Linear Shortcut of a Tour

Definition 4. A linear shortcut of given a tour is derived by choosing 0, 1 or
2 points (called Anchor Points) from each tour-edge according to some strategy
and connecting those points by straight lines in the order of visiting those edges.
It is called linear as only new straight lines are introduced in the resulting tour
instead of any curves.
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Fig. 1. Example of Linear Shortcut of a tour

An example of linear shortcut of a tour is shown in Figure 1. Five Anchor
Points p1, p2, p3, p4 and p5 are chosen from five tour-edges. Those are connected



in the order of their visiting in the given tour to produce the linear shortcut.
The first and the last points are also connected to make the path a cycle. The
tour < p1, p2, p3, p4, p5, p1 > is a linear shortcut but < p1, p3, p2, p4, p5, p1 > is
not. Using principle of triangle inequality, Lemma 1 can be easily proved.

Lemma 1. If at least one anchor point is not coincident with the endpoint of
the tour-edge, the linear shortcut is shorter than the given tour. (Proved using
Triangle Inequality)

4.2 Linear Shortcut of the TSP-tour
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Fig. 2. Label Covering tour in a cluster with five nodes

In [12] and [13], a tour known as Label Covering or LC tour is derived from
the TSP-tour. As shown in Figure 2, the tour-edges between nodes 1 and 2 are
also within the range of Node 3 and 5. Therefore, the label set of this edge is
{1, 2, 3, 5}. Similarly, the sets of labels of all other edges are determined. the
minimum length label covering tour is determined by making shortcut of zero
or more edges of the given TSP-tour. For the graph shown in Figure 2, the
TSP-tour is < 1, 2, 3, 4, 5, 1 > and the LC-tour derived from it is < 1, 2, 3, 1 >.

4.3 Linear Shortcut of the LC-tour

Definition 5. The segment of the tour-edge which is within the circle represent-
ing the transmission area of a node is called the Contact Interval (CI) of that
node on that edge.

As shown in Figure 3, four nodes are covered by an edge connecting Node
ni and nj . Each of their CI’s is represented by two points on the edge i.e the
l (which is encountered first by the MDC on this edge) and the r points. For
example, the CI of Node ni+1 is given by (lni+1, rni+1). If the intersection of
the circle and the straight line is beyond the edge, the end-point of the CI is the
nearest end-point of the edge. For example, in Figure 3, r-point of Node ni+5 is
the location of Node nj .
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Definition 6. Given a list of contact intervals CIe of a tour-edge e, Critical
Contact Interval or CCI is the interval of the minimum length which has at least
one point from each contact interval.

Critical Contact Interval or CCI of i-th edge is represented by two points-
lcci and rcci on that edge. These points can be determined as follows:

lcci← r-point closest to the first end-point along the tour-edge

rcci← l-point closest to the last end-point along the tour-edge

For example, the CCI of the edge shown in Figure 3 is determined in Figure 4.

lni+1 rni+1

lni+2 rni+2

lni+3 rni+3

lni+4 rni+4

lni+5 rni+5

lcci = rni+2 rcci = lni+5

Fig. 4. Critical Contact Interval for a given list of intervals

After the CCI’s have been computed, we can connect r point of the CCI of an
edge with the l point of the CCI of the next edge. However, the nodes visited in
the given tour may be missed as shown in Figure 5(a). Therefore, to cover those
nodes, we apply the following method for a Node ni:

1. If both the edges have non-Null CCI’s, i.e. there are intermediate nodes on
both the edges, then we add the r point of the incoming edge with the l
point of the outgoing edge. We call this line segment r-l line segment.
(a) If r-l line segment intersects circle of Node ni, then CCI’s of both of the

adjacent edges are kept unchanged (See Figure 5(b)).
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(c) TLC-tour derived in Iteration 1
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(d) Updating the l and r point after Itera-
tion 1
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(e) TLC-tour derived in Iteration 2
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(g) TLC-tour derived in Iteration 3
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Fig. 5. Generating TLC-tour using Linear Shortcut



(b) If r-l line segment does not intersect the circle of Node ni, then we draw
a straight line that is parallel to the r-l line segment and tangent to that
circle. Let this line intersects the incoming and outgoing edges at points
pi and po respectively. (see Figure 5(b) for Node n11). We update the
r point of the incoming edge and the l point of the outgoing edge as pi
and po respectively.

2. If the incoming edge does not have any intermediate node with overlapping
circle or (in case it has) its r point is farther from point ni by at least TXR,
then we compute the point pi as the intersection between the incoming edge
and the circle centered at ni. If the incoming edge has non-null CCI, then
we update its r point as pi. Otherwise, we set the incoming edge’s r and l
point as pi. This case applies for Nodes n1, n2 and n13 as shown in Figure
5(b).

Now, we join the r point of the previous edge with the l point of the next edge.
The final edges are shown as bold straight lines in Figure 5(c). We term this
shortening as tightening of the given tour by the linear shortcut method. We
term the shorter tour derived from the LC-tour as Tight Label Covering tour or
TLC-tour.

4.4 Iterative Improvement of the TLC -tour

The path found in Figure 5(c) can be further shortened using the linear shortcut
method. We divide each iteration of improvement into 2 steps:

1. Connect the r point rcci of i-th edge with l point lccj of the next edge (j-th
edge such that j > i) with non-Null CCI and include the edge connecting
lccj and rccj in the edge set.

2. Re-associate the intermediate circles with the resulting edges and recompute
the CCI’s for each edge.

Now, we use the following policy to re-associate the circles when existing tour-
edges break into shorter ones and new edges are added :

1. For each circle adjacent with two edges, the CI’s for the both the edges are
calculated. Then the circle is associated with the edge on which the circle
has longer CI.

2. If the CI’s for both the edges are equal, the circle is associated with the
incoming edge.

As shown in Figure 5(d), there are eight edges. Circle of Node n1 has overlaps
with both the outgoing and the incoming edges. However, unlike the incoming
edge, the circle has a CI of non-zero length with the outgoing edge. Therefore,
we associate Node n1 with this edge. Node n2 has CI’s of zero length with
both the incoming and the outgoing eges. Therefore, we associate it with the
incoming edge.The CCI of the edge connecting n1 and n2 is updated after this
re-association. In similar ways, we determine the l and r points of the CCI’s of
the remaining edges. After this round of re-associating of circles and computation



of the CCI’s of respective edges, we join the r point of an edge with the l point
of the next edge. Thus, the tour as shown in Figure 5(e) is derived. According
to the Lemma 1, it is shorter than the tour derived in the previous iteration.

We can continue this way in to more iterations to tighten the given tour. The
steps are illustrated in Figure 5(f), 5(g) and 5(h).
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Fig. 6. Comparison between input LC-tour (doted path) and TLC-tour (solid path)
derived in Iteration 4

The given LC-tour and the TLC-tour derived after Iteration 4 has been
imposed on each other for comparison in Figure 6. The derived TLC-tour is a
significantly shorter than the LC-tour.

Condition For the Termination of Iterations: We can define path gain
gi(tTLC) for a TLC-tour derived in iteration i as follows:

gi(tTLC) =
|tTLC |i−1 − |tTLC |i

|tTLC |i
(5)

Here |tTLC |i is the length of the TLC-tour derived in iteration i. We stop the
iterations for path-shortening as soon as the path gain is below a threshold like
1%, 5% etc.

Computation Complexity: Our method of generating TLC-tour is formally
presented in Algorithm 1. First, we generate the CI’s for all the circles in O(n)
time. Then, we sort the CI’s in the non-decreasing order of the distance from the
first endpoint of the edge in O(n log n) time. Therefore, we generate the CCI for
an edge in O(n + n log n) = O(n) time. For a given tour, there are O(n) edges.
Therefore, we generate CCI’s of all the edges in O(n2) time. Then, we connect
successive r and l Points in O(n) time. For each edge, we test the circles for
re-association. There may be O(n) such circles associated with each edge and a
total of O(n) edges. Therefore, updating the CCI’s takes O(n2) time.



Algorithm 1 Generating TLC-tour from LC-tour

Input: LC-tour TLC and a path-gain threshold gt
1: Compute the CI’s of all the nodes
2: Compute the CCI’s of all the edges
3: while path-gain > tg do
4: derive tour TTLC by connecting the r point of an edge with the l point of the

next edge
5: for each edge e do
6: for each Circle c (of Node n) associated with Edge e do
7: re-associate Circle c (if necessary)
8: end for
9: update CCI of Edge e

10: end for
11: determine path-gain
12: end while
Output: TLC-tour TTLC

TSP -tour generator

LC-tour generator

TLC-tour generator

O(TSP )

O(n3)

O(n2)

for m iteration: O(mn2)

O(TSP ) +O(n3) +O(mn2)

Fig. 7. Stages of computation along with the time complexity

If there are m iterations, then generating TLC-tour from LC-tour takes
O(mn2) time. We illustrate the stages of computation along with the time com-
plexity in Figure 7.

5 Experimental Results

We use Castelia[17] framework of OMENT++ simulator to distribute sensor
nodes randomly. The sensor nodes also generated packet randomly. We use Con-
cord TSP-Solver [18] to compute the optimal TSP-tour. We derive the LC-tour
from the TSP-tour and the TLC-tour from the LC-tour using path-gain thresh-
old of 5%. The MDC tours continuously in TSP-tour, LC-tour and TLC-tour.
During its travel, it collects the packets from the sensor nodes and deposits
those to the sink node. We vary the value of TXR from 2m to 32m. Low value
of TXR indicates lower degree of connectivity and hence, sparse network. Sim-
ilarly, higher value of TXR indicates dense network.



(a) Average Packet Delivery Latency (b) Throughput

Fig. 8. Comparison among TSP-tour, LC-tour and TLC-tour

As shown in Figure 8(a), average packet delivary latency is always the lowest
for TLC-tour and the highest for TSP-tour. The value is comparatively better
in the case of the sparse WSN. In Figure 8(b), throughput for the entire run
is shown. The value is always the highest for TLC-tour and the lowest for the
TSP-tour.

6 Conclusion

We have given a framework for shortening a given tour of the MDC. The re-
sulting tour decreases packet delivery latency and increases throughput. The
TLC-tour derived by Linear Shortcut of the LC-tour is highly suitable for real-
time WSN in which high latency is undesirable.

In our future work, we shall consider more objectives besides minimizing
latency, for example- facilitating multi-hop forwarding among the sensor nodes,
load-balancing of the network traffic etc. We shall also extend the path-planning
for a WSN with multiple MDC’s and multiple sinks.
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